在本教程中,我们将学习列表的最常用方法,即append()和extend()。让我们一一看。
它用于将函数应用于DataFrame的每一行。例如,如果我们想将每个中的所有数字相乘并将其添加为新列,那么apply()方法将是有益的。让我们看看实现它的不同方法。
# importing the pandas package
import pandas as pd
# function to multiply
def multiply(x, y):
return x * y
# creating a dictionary for DataFrame
data = {
'Maths': [10, 34, 53],
'Programming': [23, 12, 43]
}
# creating DataFrame using the data
data_frame = pd.DataFrame(data)
# displaying DataFrame
print('--------------------Before------------------')
print(data_frame)
print()
# applying the function multiply
data_frame['Multiply'] = data_frame.apply(lambda row : multiply(row['Maths'], row['
Programming']), axis = 1)
# displaying DataFrame
print('--------------------After------------------')
print(data_frame)如果运行上面的程序,您将得到以下结果。
--------------------Before------------------ Maths Programming 0 10 23 1 34 12 2 53 43 --------------------After------------------ Maths Programming Multiply 0 10 23 230 1 34 12 408 2 53 43 2279
我们还可以使用预定义的函数,例如sum,pow等。
# importing the pandas package
import pandas as pd
# creating a dictionary for DataFrame
data = {
'Maths': [10, 34, 53],
'Programming': [23, 12, 43]
}
# creating DataFrame using the data
data_frame = pd.DataFrame(data)
# displaying DataFrame
print('--------------------Before------------------')
print(data_frame)
print()
# applying the function multiply
# using built-in sum function
data_frame['Multiply'] = data_frame.apply(sum, axis = 1)
# displaying DataFrame
print('--------------------After------------------')
print(data_frame)如果运行上面的程序,您将得到以下结果。
--------------------Before------------------ Maths Programming 0 10 23 1 34 12 2 53 43 --------------------After------------------ Maths Programming Multiply 0 10 23 33 1 34 12 46 2 53 43 96
我们还可以使用numpy模块中的函数。让我们看一个例子。
# importing the pandas package
import pandas as pd
# importing numpy module for functions
import numpy as np
# creating a dictionary for DataFrame
data = {
'Maths': [10, 34, 53],
'Programming': [23, 12, 43]
}
# creating DataFrame using the data
data_frame = pd.DataFrame(data)
# displaying DataFrame
print('--------------------Before------------------')
print(data_frame)
print()
# applying the function multiply
# using sum function from the numpy module
data_frame['Multiply'] = data_frame.apply(np.sum, axis = 1)
# displaying DataFrame
print('--------------------After------------------')
print(data_frame)如果运行上面的程序,您将得到以下结果。
--------------------Before------------------ Maths Programming 0 10 23 1 34 12 2 53 43 --------------------After------------------ Maths Programming Multiply 0 10 23 33 1 34 12 46 2 53 43 96
通过以上方式,我们可以使用DataFrame的apply()方法为所有行应用一个函数。