假设我们有一个二维二进制矩阵,其中填充了0和1。我们必须找到仅包含1的最大正方形,并返回其面积。所以如果矩阵像-
| 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 | 0 |
然后输出将是4
为了解决这个问题,我们将遵循以下步骤-
ans:= 0,n:=行数,c:=行数
如果n为0,则返回0
创建另一个订单矩阵(nxc)
对于i,范围为0至n – 1
m [i,j]:=矩阵[i,j]
ans:= m [i,j]和ans的最大值
对于j,范围从0到c – 1
对于j,范围从0到c – 1
m [i,j]:= 1 + m [i +1,j],m [i,j-1],m [i +1,j-1]的最小值,
如果m [i,j]不为0,则
ans:= m [i,j]和ans的最大值
返回ans * ans
让我们看下面的实现以更好地理解-
#include <bits/stdc++.h>
using namespace std;
class Solution {
public:
int maximalSquare(vector<vector<char>>& matrix) {
int ans = 0;
int n = matrix.size();
if(!n)return 0;
int c = matrix[0].size();
vector<vector<int>> m(n, vector <int> (c));
for(int i =0;i<n;i++){
for(int j = 0; j<c;j++){
m[i][j] = matrix[i][j] - '0';
ans = max(m[i][j],ans);
}
}
for(int i =n-2;i>=0;i--){
for(int j =1;j<c;j++){
if(m[i][j]){
m[i][j] = 1 + min({m[i+1][j],m[i][j-1],m[i+1][j-1]});
}
ans = max(ans,m[i][j]);
}
}
return ans*ans;
}
};
main(){
vector<vector<char>> v = {{'1','0','1','0','0'},{'1','0','1','1','1'},{'1','1','1','1','1'}, {'1','0','0','1','0'}};
Solution ob;
cout << ((ob.maximalSquare(v)));
}[["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
输出结果
4