众所周知,高斯滤波在图像处理领域非常有用。用于减少图像的噪点。在本节中,我们将看到如何生成2D高斯内核。用于生成2D内核的高斯分布如下。
$$G(x,y)= \ frac {1} {2 \ Pi \:\ sigma ^ {2}} e ^ {\ frac {x ^ {2} + y ^ {2}} {2 \ sigma ^ {2}}} $$
让我们看下面的实现以更好地理解-
#include <cmath>
#include <iomanip>
#include <iostream>
#define PI 3.1415
using namespace std;
void calc_filter(double kernel[][5]) {
double sigma = 1.0;
double p, q = 2.0 * sigma * sigma;
double sum = 0.0;
for (int x = -2; x <= 2; x++) {
for (int y = -2; y <= 2; y++) {
p = sqrt(x * x + y * y);
kernel[x + 2][y + 2] = (exp(-(p * p) / q)) / (PI * q);
sum += kernel[x + 2][y + 2];
}
}
for (int i = 0; i < 5; i++)
for (int j = 0; j < 5; j++)
kernel[i][j] /= sum;
}
int main() {
double kernel[5][5];
calc_filter(kernel);
for (int i = 0; i < 5; ++i) {
for (int j = 0; j < 5; ++j)
cout << kernel[i][j] << " ";
cout << endl;
}
}输出结果
0.00296902 0.0133062 0.0219382 0.0133062 0.00296902 0.0133062 0.0596343 0.0983203 0.0596343 0.0133062 0.0219382 0.0983203 0.162103 0.0983203 0.0219382 0.0133062 0.0596343 0.0983203 0.0596343 0.0133062 0.00296902 0.0133062 0.0219382 0.0133062 0.00296902