在这里,我们将看到Baum Sweet Sequence。该序列是一个二进制序列。如果数字n的奇数个连续0,则第n位将为0,否则第n位将为1。
我们有一个自然数n。我们的任务是找到Baum Sweet序列的第n个项。因此,我们必须检查它是否具有奇数长度的零的任何连续块。
如果数字为4,则该项将为1,因为4为100。因此它具有两个(偶数)个零。
BaumSweetSeqTerm(G,s)-
begin define bit sequence seq of size n baum := 1 len := number of bits in binary of n for i in range 0 to len, do j := i + 1 count := 1 if seq[i] = 0, then for j in range i + 1 to len, do if seq[j] = 0, then increase count else break end if done if count is odd, then baum := 0 end if end if done return baum end
#include <bits/stdc++.h>
using namespace std;
int BaumSweetSeqTerm(int n) {
bitset<32> sequence(n); //store bit-wise representation
int len = 32 - __builtin_clz(n);
//Builtin_clz()函数给出第一个1之前的零数目
int baum = 1; // nth term of baum sequence
for (int i = 0; i < len;) {
int j = i + 1;
if (sequence[i] == 0) {
int count = 1;
for (j = i + 1; j < len; j++) {
if (sequence[j] == 0) // counts consecutive zeroes
count++;
else
break;
}
if (count % 2 == 1) //check odd or even
baum = 0;
}
i = j;
}
return baum;
}
int main() {
int n = 4;
cout << BaumSweetSeqTerm(n);
}输出结果
1